
Page 1 of 5

SINGLETON

THE ANTI-PATTERN!

Copyright © Mark Radford, September 2003

A pattern captures and documents good practice that has been learned by experience. Patterns
are a relative newcomer to software development, yet have actually existed in spirit within
that community for as long as software has been developed. The point is this: skilled software
developers have always known that when solving problems, some solutions seemed to work

with the benefit of prior experience, some solutions just felt right. A Pattern captures a
problem and a solution that works, but that s not all, for it is very rare to find a solution that
works in all circumstances. When experienced software developers apply a solution, they do
so as a result of their experience, taking into account the context in which the problem occurs
as well as the tradeoffs accepted in adopting that solution. Therefore, a Pattern captures a
problem in context, together with a solution and its tradeoffs.

Patterns came to the attention of software developers in the 1990s and have accumulated a
healthy body of literature. The book is the best known and the one responsible
for getting the mainstream of the community interested. It is rather ironic and sad, that this
very book is also responsible for one of the worst red herrings ever to mislead the software
developers: SINGLETON!

According to the intent of SINGLETON is to:

Ensure a class has one instance, and provide a global point of access to it.

Unfortunately this is rather vague, and this in itself causes some difficulties in discussing
SINGLETON, because it fails to take into account that a SINGLETON is only meaningful if it has
state. In the absence of state, ensuring there is only ever one object of a particular class is
meaningless, because each instance is the same as every other one.

I have implemented SINGLETON many times over the past several years, and now, I can t think
of one where the SINGLETON solution was actually a good solution to the problem it attempted
to solve. It seems to me that there are some serious problems with the whole approach,
because correspondence between problem and solution domain models, encapsulation, and
the ability to perform initialisation, are all compromised. Further, it is now my belief that the

 examples of where deployment of SINGLETON is claimed to be a good
approach, fail to stand up under scrutiny (but more about that shortly).

I have remarked that patterns capture good ways of solving problems. However, for every
good way there are many bad ones and some of these can be found deployed several times in
practice. One reason for the repeated deployment of a bad solution is that it appears to solve
the problem, and usually this is for one (or, for that matter, both) of two reasons:

The problem that needs solving has not been correctly identified, and this results in the
deployed solution being a solution to the wrong problem

The solution has been deployed because it really does solve the problem, but subject to
a set of tradeoffs ranging in quality from less than optimal to downright unsuitable

Such a recurring solution i.e. one that leads to a worse rather than better design context is
known as an anti-pattern. It is my belief that SINGLETON is not a pattern but an anti-pattern,
and that its use causes design damage! In this article I will attempt to state my case. I will
start by listing several reasons why I think SINGLETON is a bad idea, and finish by making
some recommendations for alternative approaches.

Page 2 of 5

Problems
According to , Singleton is a design pattern this means it is either language
independent, or at least applicable to several languages. I will detail what I think the critical
problems with SINGLETON are i.e. the reasons why I choose to use the strong term design
damage with this factor in mind.

Design Models
I think the best way to proceed here, is to start by going back to the basics of interface design,
and in particular the questions of:

How much knowledge should an object be able to assume of the outside world in which
it will be used?

How much responsibility should be captured within a single interface?

The answer to the first of these is simply this: an object s knowledge of the outside world
should extend to what it is told via its interface. The purpose of an object is to provide certain
functionality to its clients, and to this end an object should provide the minimum useful
interface that makes this functionality accessible. This underpins modularity in a design. How
an object is used in the outside world beyond its interface is something that it should as a
matter of design principle not assume any knowledge of. Therefore it follows that an
interface can t make any assumptions about how many objects that support that interface are
needed, because that issue is resolvable only in the outside world.

The question of how much responsibility an interface should be charged with is somewhat
less concrete. An interface should be cohesive to the point that it embodies one role in a
design, but where the boundaries of a role definition lie is by no means hard and fast.
Consider an interface supporting a simple FACTORY METHOD: we can see that beyond
whatever functionality the interface provides, its role is extended to also serve up other
objects with related roles. However, in the case of SINGLETON, the interface must not only
serve up the single object, but must also in addition to whatever design role it plays

promise to manage that object. Its role therefore extends to three responsibilities.

Object design affords the capability to preserve correspondence between the problem domain
model, through the stages of modelling the solution domain, and down to the implementation
code. In his presentation Kevlin Henney uses the term modelarity as meaning a
measure of the correspondence between the components of the problem being modelled and
those in its solution . This modelarity factor alone plays a large part in accounting for the
effectiveness of objects in software design. A key feature of a well designed system is the
harmony between modelarity and modularity.

The whole premise on which SINGLETON is based is that there can only ever be one object of a
certain class. When a design is viewed from the perspective of preserving modelarity, it
suddenly becomes apparent that this premise is far from sound! In arguing this particular case,
I will go back to , and examine what it claims are good uses of SINGLETON. In
the section titled Motivation makes the following statements:

Although there can be many printers in a system, there should only be one print spooler

A digital filter will only have one A/D converter

An accounting system will be dedicated to serving one company

Page 3 of 5

The above three assertions all have something in common: they describe cases of a client (the
system that uses the print spooler, the digital filter and the company) needing and using the
services of only one instance of a supplier (the spooler, A/D converter and accounting system,
respectively). Now asserts that the spooler, A/D converter and accounting
system are therefore candidates for being SINGLETONs. This however is not the case and
would compromise modelarity, because there is no inherent reason why these three types of
service supplier can only have one instance the real case is that only one instance is needed
by the client, and the real problem is that of how the client should manage the one instance it
needs. Forcing the supplier to only ever have one instance deprives the model of its
opportunity to express the cardinality. The model suffers because the wrong problem has been
solved!

There is another way in which the use of SINGLETON compromises the harmony between
modelarity and modularity. Here the problem is more subtle because SINGLETON appears to
underpin modularity by putting an interface and the management of its instance in one place,
but this is actually an illusion. The problem domain is the source of and motivation for the
model, but the management of instances is a facet of the design of a software system it does
not happen in the problem domain. Therefore, instance management is a concern in its own
right, that should be separated from others. It follows that, while it could be argued putting an
interface and the management of its instance in one place constitutes modularity, the
argument that this is the wrong modularity is far more compelling!

Encapsulation
Encapsulation is fundamental to object oriented design. It is the principle by which concerns
are compartmentalised, and boundaries are drawn around them. Specifically, encapsulation
manifests itself in software design in the form of implementation detail being kept cordoned
off and used only via a public interface. It is this principle the encapsulated implementation
being accessed via a well defined public interface that underpins many of the benefits that
good design brings with it: clear communication of intended usage, ease of testability etc.

Global variables have been known to be the enemy of encapsulation for some time.
Singletons have but one instance, and it penetrates the scopes in which it is used via a route
other than the public interface, making it the operational equivalent of a global variable.
Therefore, SINGLETONs have many of the same drawbacks as global variables, and it is
unfortunate that their appearance in has lead to so many software developers
failing to notice this. In both cases i.e. Singletons and global variables it becomes difficult
to specify the pre and post conditions for the client object s interface, because the workings of
its implementation can be meddled with from outside, but without going through the
interface. A consequence of the difficulties in specifying pre and post conditions is that unit
tests become harder to specify.

Initialisation
Usually, at the start of a program you won t have the information needed for a SINGLETON s
initialisation. Initialisation on first use is no good, because you won t know which path will
be taken through the program until it is actually run. If there is only one instance of a
SINGLETON, then it must be initialised only once, on or just before the (unique) object is first
used. However, the path through the code will not be known until run time, and so there is no
way to know the point at which the SINGLETON instance must be initialised.

One attempt to get around this I have seen (I m deliberately not using the word solution) is
to attempt to initialise on every possible control flow on which a reference to the SINGLETON

Page 4 of 5

is obtained, with an exception being raised if it is used prior to initialisation. Besides being
plain ugly, this approach introduces a maintenance headache; specifically this means:

If a new control flow is introduced into the program and a reference to the SINGLETON

object is acquired on it, then it is also necessary to ensure the initialisation is executed
on the new control flow.

When the test suite is updated to take account of the new control flow, an additional test
 i.e. a test that fails if acquiring a reference to the Singleton object raises an exception
 will be needed to ensure initialisation has taken place

All this is not to say that initialising the SINGLETON s instance is impossible, but the number
of necessary workarounds and overheads can easily be seen mounting up.

Recommendations
Having given reasons why the use of SINGLETON causes damage to software design, what
recommendations can be made for alternative approaches? It seems logical to look at the
drawbacks described above, and suggest approaches that do not suffer from the same
drawbacks. I ll start by addressing the latter two drawbacks i.e. initialisation difficulties and
breach of encapsulation and then assess the situation. Consider the following two
approaches, when a Client object uses the services of a Supplier object

Supplier
being the object that would have been a SINGLETON, had such a design approach been used.

Approach

When it makes sense

Pass the Supplier object directly into the
Client s methods that make use of it, by
passing the Supplier object directly through
the interfaces of those methods.

When the Client object is
not the sole user of the
Supplier object.

Pass the information (i.e. the arguments) needed
to create the Supplier object to Client
through its interface, so that Client can create
the Supplier object within its implementation.

When the Client object is
the sole user of the Supplier
object.

Both these approaches are examples of the pattern PARAMETERISE FROM ABOVE (see).
Actually, there s something familiar about these two approaches, and so there should be,
because they re just describing normal design practices!

It is obvious that using either of the above approaches, there will be no problems initialising
the Supplier object. In both cases Supplier can be initialised when it is created, be it in
Client itself (latter approach) or in Client s client.

Encapsulation is also significantly strengthened, and a good way to demonstrate this is to
consider what happens when Client s interface is unit tested. When the design approach
used makes Supplier a SINGLETON the behaviour of Supplier is unpredictable because it
is outside the control of both Client and its client. In this scenario the behaviour of the
component under test and hence the outcome of the test is affected by something invisible
and uncontrollable. Replace this scenario with one where either of the above two approaches
is used and this changes as follows:

In the former case Supplier can be replaced with a test implementation exhibiting
behaviour designed to test Client

Page 5 of 5

In the latter case Supplier is an implementation detail of Client, so the lifetime of
Supplier is encapsulated completely within Client and therefore there is no element
of randomness about it

Now that initialisation and encapsulation are taken care of, what of the issues related to
models and class design? Well, interface design seems to be in good shape: what could be
more natural than passing an object either a supplier object, or the information needed to
create one

through an object s interface? Unfortunately, the approaches recommended here

will not automatically avoid compromising any models. What is for certain is that no models
are automatically compromised either, which would be the case were an approach involving
SINGLETON to be used (for reasons described earlier in this article). It was SINGLETON s
mixing of concerns in its interface its role in the model and the object management concern
 that was problematic, but provided participating interfaces are designed with attention being

paid to cohesion, this does not happen when a PARAMETERISE FROM ABOVE approach is
adopted.

Summary
For a problem and its solution to be a pattern, the solution must be a good one in practice.
SINGLETON is based on the premise that a class must only ever have one instance, and must
itself enforce this singularity but the premise is false because the client of the class, not the
class itself, is in a position to know how many instances are needed. Further, breaching
encapsulation and causing initialisation difficulties cannot be good for any set of design
tradeoffs. Given the design damage that SINGLETON inflicts, it must be considered an anti-
pattern.

Mark Radford
(mark@twonine.co.uk)

References
: Kevlin Henney, Design: Concepts and Practices, Keynote presentation at JaCC,

Oxford, 18th September 1999 (available from www.curbralan.com).

: Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

: PARAMETERISE FROM ABOVE is a term in use, but there is currently no formal write-up.

Acknowledgements
Thanks to Kevlin Henney and Alan Griffiths for their helpful comments.

http://www.curbralan.com

