
Separating Interface and Implementation in C++
by Alan Griffiths & Mark Radford

Introduction
This article discusses three related problems in the design of C++ classes and surveys five of the
solutions to them found in the literature. These problems and solutions are considered together because
they relate to the separation of the design choices manifested in the interface from those made in
implementing the class. The problems are:

Reducing implementation detail exposed to the user

Reducing physical coupling

Allowing customised implementations

These have led developers to seek ways to separate interface from implementation and practice has
seen all of the following idioms used and documented. We will be evaluating them to see how they
compare as solutions to the above problems:

Interface Class

Cheshire Cat

Delegation

Envelope/Letter

Non-Virtual Public Interface

In order to illustrate the problems and solutions we are going to use a telephone address book (with
very limited functionality) as an example. For comparison purposes we have implemented this both as
a naïve implementation (see first sidebar) which does not attempt to address any of the stated problems.
We have also refactored this example to use each of the idioms - the header files are reproduced in the
corresponding sidebars. (The full implementation and sample client code for all versions of the
example are available with the online version of this article [WEB05].)

Examining the Problems

Problem 1: Reducing implementation detail exposed to the user

Client code makes use of an object via its public interface, without any recourse to implementation
details. Since the authors of client code have to use an object through its public interface, that interface
is all they need to understand. This public interface typically comprises member function declarations.

C++ allows developers to separate the implementation code for member functions from the class
definition, but there is no comparable support for separating the member data that implements an
object's state (or, for that matter, for separating the declarations of private member functions).
Consequently the implementation detail exposed in a class s definition is still there as background
noise, providing users with an added distraction. The definition of a class is typically encumbered with
implementation noise that is of no interest to the user and is inaccessible to the client code written by
that user: the naïve implementation shows this with "MyDict", "myName" and "dict".

Problem 2: Reducing Physical Coupling

The purpose of defining a class in a header file is for the definition of that class to be included in any
translation units that define the client code for that class. If classes are designed in a naïve manner this
leads to compilation dependencies upon details of the implementation that are not only inaccessible to
the client code but also (in most cases) do not affect it in any way.

These compilation dependencies are undesirable for two reasons:

Additional header file inclusions may be required to compile the class definition. This
increases the size of all dependent translation units. The "Naïve Implementation" example
needs <map> even though std::map is not used in the public interface - if this were a user
header with its own inclusions these too might be "bloat".

When changes are made to implementation elements in the header - even without affecting the
interface - the client code must be recompiled. (When using shared libraries this can also
introduce binary incompatibilities between versions.) Should the example implementation
change the choice of using "MyDict", "myName" or "dict" this affects all client code.

In a medium to large system the effect of these compilation dependencies can multiply to an extent that
causes excessive and problematic build times.

Problem 3: Allowing Customised Implementations

Library code frequently defines points of customisation for user code to exploit. One of the ways to do
this is to specify an interface as a class and allow the user code to supply objects that conform to this
interface.

Such a library is typically compiled before the user code is written. In this case the library contains the
"client code" and for this to have compilation dependencies on the implementation would be
problematic.

Clearly, the naïve implementation makes no provision for alternative implementations.

The Idioms

We present the best known idioms for implementation hiding along with some comments in italics.
Each of these idioms can have advantages and these need to be understood when choosing between
them.

Cheshire Cat

A private "representation" class is written that embodies the same functionality and interface
as the naïve class - however, unlike the naïve version, this is defined and implemented entirely
within the implementation file. The public interface of the class published in the header is
unchanged, but the private implementation details are reduced to a single member variable
that points to an instance of the "representation" class, each of its member functions forwards
to the corresponding function of the "representation" class.

The term Cheshire Cat (see [Murray1993]) is an old one, coined by John Carollan over a
decade ago. Sadly it seems to have disappeared from use in contemporary C++ literature. It
appears described as a special case of the "Bridge" pattern in "Design Patterns" [GOF95], but
the name Cheshire Cat is not mentioned. Herb Sutter (in [Sut00]) discusses it under the
name Pimpl idiom , but considers it only from the perspective of its use in reducing physical
dependencies. It has also been called "Compilation Firewall".

Cheshire Cat requires "boilerplate" code in the form of forwarding functions that are tedious
to write and (if the compiler fails to optimise them away) can introduce a slight performance
hit. It also requires care with the copy semantics (although it is possible to factor this out into
a smart pointer - see [Griffiths99]). As the relationship between the public and
implementation classes is not explicit it can cause maintenance issues.

Delegation

One or more areas of the class functionality are factored out from the naïve implementation
into separate helper classes. The class published in the header holds a pointer to each of these
classes and delegates responsibility for the corresponding functionality by forwarding the
corresponding operations. This is similar to Cheshire Cat, except that some implementation

may remain exposed (like myName in the example) and there may be more than one helper
class. (The helper classes may be defined and implemented in the implementation file - as in
the sample code - or placed in a header file and made available for use by other code.)

Delegation is attractive where there is a distinct area of functionality that can be factored out
or shared with another class. In maintenance and performance terms it is similar to Cheshire
Cat.

Envelope/Letter

As with "Cheshire Cat" a private "representation" class is written which implements the same
functionality and interface as the naïve class but is defined and implemented entirely within
the implementation file. The variations from "Cheshire Cat" are:

The "representation" class is derived from the public one.

The member functions of the public class are declared "virtual" (and overridden
in the implementation class).

The class published in the header holds a pointer to what appears to be another
instance of the class but, in fact, is an instance of the derived class.

This is described in some detail in Coplien's "Advanced C++ Style and Idioms" [Cope92].

Frankly Envelope/Letter confuses us - we don't see what advantage it gives over Cheshire Cat.
(Maybe it is just a misguided attempt to represent the correspondence of interface and
implementation functions explicitly?) But please read Coplien and make up your own mind! In
performance terms each client call initiates two function calls dispatched via the v-table - so it
is the slowest of the idioms. (However it is rare that the overhead of a virtual function call is
significant.)

Interface Class

All member data is removed from the naïve class and all member functions are made pure
virtual. In the implementation file a derived class is defined and implements these member
functions. The derived class is not used directly by client code, which sees only a pointer to
the public class.

This is described in some detail in Mark Radford's "C++ Interface Classes An Introduction"
[Radford04].

Conceptually the Interface Class idiom is the simplest of those we consider. However, it may
be necessary to provide an additional component and interface in order to create instances.
Interface Classes, being abstract, can not be instantiated by the client. If a derived
"implementation" class implements the pure virtual member functions of the Interface Class,
then the client can create instances of that class. (But making the implementation class
publicly visible re-introduces noise.) Alternatively, if the implementation class is provided
with the Interface Class and (presumably) buried in an implementation file, then provision of
an additional instantiation mechanism e.g. a factory function

is necessary. This is shown
as a static "create" function in the corresponding sidebar.

As objects are dynamically allocated and accessed via pointers this solution requires the
client code to manage the object lifetime. This is not a handicap where the domain
understanding implies objects are to be managed by a smart pointer (or handle) but it may be
significant in some cases.

Note: Interfaces may play an additional role in design to that addressed in this article - they
may be used to delineate each of several roles supported by a concrete type. This allows for
client code that depends only on (the interface to) the relevant role.

Non-Virtual Public Interface

All member data is removed from the naïve class, the public interface becomes non-virtual
forwarding functions that delegate to corresponding private pure virtual functions. As with
Interface Class the implementation file defines a derived class that implements these member
functions. The derived class is not used directly by client code, which sees only a pointer to
the public class.

This is described in some detail in Sutter's "Exceptional C++ Style" [Sut04].

We had thought Non-Virtual Public Interface an idea that had been tried and discarded as
introducing unjustified complexity. While the standard library uses this idiom in the iostreams
design we've yet to see an implementation of the library that exploits the additional flexibility
(in implementing the public functions) it offers over Interface Class. Further, there are some
costs to providing this flexibility:

A class definition embodies the contract between code that uses and code that
implements that class. By splitting the contract into (public) non-virtual usage
and (private) virtual implementation parts it introduces a need to understand
both and also a need to document and follow the relationship between them.

There is a development and maintenance cost: because the implementation
functions are private to the base class they cannot be called directly by a unit
test.

There is a potential performance cost: if the extra function call is not optimised
away it can use additional stack space and time.

Evaluating the Solutions

Problem 1: Reducing implementation detail exposed to the user

All the idioms considered address this problem reasonably successfully. The only implementation
detail any of these idioms expose is the mechanism by which they support the separation:

Interface Class declares virtual functions

Cheshire Cat exposes a pointer to the "real" implementation

Non-Virtual Public Interface declares forwarding functions and virtual functions

Envelope/Letter declares virtual functions and a pointer to the "real" implementation

Delegation is in a way the odd one out, because it does not by nature conceal all the implementation
detail. This point is illustrated in our example implementation where the std::string member
myName is visible in the definition of TelephoneList. Delegation reduces the implementation
noise exposed to clients, but - unless all functionality is delegated to one (or more) other classes - it
leaves the class still vulnerable to the problems suffered by the naïve implementation.

Problem 2: Reducing Physical Coupling

When the principal concern is reducing compile time dependencies the size (including indirect
inclusions) of the header is more significant than that of the implementation file. However, in most
cases, there is very little difference between the header files required by the different idioms - in our
example they all have the same includes and the file lengths are as follows:

$ wc *.h | sort
 62 163 1580 cheshire_cat.h
 62 184 1677 interface_class.h
 65 162 1535 naive.h
 66 163 1554 delegation.h
 66 164 1605 envelope_letter.h
 94 285 2688 non_virtual_public_interface.h

The lack of variation is not surprising: all of the examples have eliminated the <map> header file and
the only substantial difference is that Non-Virtual Public Interface declares twice as many functions
(having both public and private versions of each).

Problem 3: Allowing Customised Implementations
It should be noted that only Interface Class and Non-Virtual Public Interface allow user
implementation - the other idioms do not publish an implementation interface.

When our principal concern is that of simplifying the task of implementing the class then the size of the
implementation file is most significant:

$ wc interface_class.cpp non_virtual_public_interface.cpp
 85 147 2013 interface_class.cpp
 89 151 2186 non_virtual_public_interface.cpp

There is no substantial difference in implementation cost between these approaches as they contain
almost identical code.

Conclusion
In scenarios where customisation of implementation needs to be supported the choice is between
Interface Class and Non-Virtual Public Interface. In this case we would prefer the simplicity of
Interface Class (unless we have a need for the public functions to do more work than forwarding -
which leads us into the territory of "Template Method" [GOF95]).

Sometimes we wish to develop "value based" classes - these can, for example, be used directly with the
standard library containers. Only three of the idioms (Cheshire Cat, Envelope/Letter and Delegation)
permit this style of class. (Using value-based classes implies that the identity of class instances is
transparent - and that may not be appropriate). Of these options, Cheshire Cat is most often the
appropriate choice - although Delegation may be appropriate if it allows common functionality to be
factored out.

There are many occasions where user customisation of implementation is not required, and the identity
of instances of the class is important. In these circumstances it is reasonable to expect client code to
manage object lifetime explicitly (e.g. by using a smart pointer). Both Interface Class and Cheshire Cat
are reasonable choices here. Interface Class is simpler, but where a strong separation of interface and
implementation is required Cheshire Cat may be preferred.

Acknowledgment
Thanks to Tim Penhey and Phil Bass for commenting on drafts of this article.

 References
[WEB05] http://www.octopull.demon.co.uk/c++/implementation_hiding.html
[Cope92] J. Coplien. Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992
[Murray1993] Robert B Murray, C++ Strategies and Tactics, Addison-Wesley, 1993.
[Sut00] Herb Sutter. Exceptional C++, Addison-Wesley, 2000
[Griffiths99] http://www.octopull.demon.co.uk/c++/TheGrin.html
[Radford04] Mark Radford, C++ Interface Classes An Introduction (Overload 62, and also available
from http://www.twonine.co.uk/articles/CPPInterfaceClassesIntro.pdf)
[Sut04] Herb Sutter. Exceptional C++ Style, Addison-Wesley, 2004
[GOF95] Gamma, Helm, Johnson & Vlissides. "Design Patterns", Addison-Wesley, 1995

<SIDEBAR name= Naïve Implementation >
// naive.h - implementation hiding example.

#ifndef INCLUDED_NAIVE_H
#define INCLUDED_NAIVE_H

#include <string>
#include <utility>
#include <map>

namespace naive
{
 /** Telephone list. Example of implementing a telephone list

http://www.octopull.demon.co.uk/c++/implementation_hiding.html
http://www.octopull.demon.co.uk/c++/TheGrin.html
http://www.twonine.co.uk/articles/CPPInterfaceClassesIntro.pdf

 * using a naive implementation.
 */
 class telephone_list
 {
 public:

 /** Create a telephone list.
 *
 * @param name The name of the list.
 */
 telephone_list(const std::string& name);

 /** Get the list's name.
 *
 * @return the list's name.
 */
 std::string get_name() const;

 /** Get a person's phone number.
 *
 * @param person The person's name (must be an exact match)
 * @return pair of success flag and (if success) number.
 */
 std::pair<bool, std::string>
 get_number(const std::string& person) const;

 /** Add an entry. If an entry already exists for this person
 * it is overwritten.
 *
 * @param name The person's name
 * @param number The person's number
 */
 telephone_list&
 add_entry(const std::string& name,
 const std::string& number);

 private:

 typedef std::map<std::string, std::string> dictionary_t;

 std::string name;
 dictionary_t dictionary;

 telephone_list(const telephone_list& rhs);
 telephone_list& operator=(const telephone_list& rhs);
 };
}

#endif

</SIDEBAR>

<SIDEBAR name= Cheshire Cat >
// cheshire_cat.h Cheshire Cat - implementation hiding example

#ifndef INCLUDED_CHESHIRE_CAT_H
#define INCLUDED_CHESHIRE_CAT_H

#include <string>
#include <utility>

namespace cheshire_cat
{
 /** Telephone list. Example of implementing a telephone list
 * using "Cheshire Cat" to hide the implementation.
 */
 class telephone_list
 {
 public:

 telephone_list(const std::string& name);

 ~telephone_list();

 std::string get_name() const;

 std::pair<bool, std::string>
 get_number(const std::string& person) const;

 telephone_list&
 add_entry(const std::string& name,
 const std::string& number);

 private:
 class telephone_list_implementation;
 telephone_list_implementation* rep;

 telephone_list(const telephone_list& rhs);
 telephone_list& operator=(const telephone_list& rhs);
 };
}
#endif

</SIDEBAR>

<SIDEBAR name= Delegation >
// delegation.h - implementation hiding example.

#ifndef INCLUDED_DELEGATION_H
#define INCLUDED_DELEGATION_H

#include <string>
#include <utility>

namespace delegation
{
 /** Telephone list. Example of implementing a telephone list
 * using "Delegation" to hide part of the implementation.
 */
 class telephone_list
 {
 public:

 telephone_list(const std::string& name);

 ~telephone_list();

 std::string get_name() const;

 std::pair<bool, std::string>
 get_number(const std::string& person) const;

 telephone_list&
 add_entry(const std::string& name,
 const std::string& number);

 private:

 std::string name;

 class dictionary;
 dictionary* lookup;

 telephone_list(const telephone_list& rhs);
 telephone_list& operator=(const telephone_list& rhs);
 };

}

#endif

</SIDEBAR>

<SIDEBAR name= Envelope/Letter >
// envelope_letter.h - implementation hiding example.

#ifndef INCLUDED_ENVELOPE_LETTER_H
#define INCLUDED_ENVELOPE_LETTER_H

#include <string>
#include <utility>

namespace envelope_letter
{
 /** Telephone list. Example of implementing a telephone list
 * using "Envelope/Letter" to hide the implementation.
 */
 class telephone_list
 {
 public:

 telephone_list(const std::string& name);

 virtual ~telephone_list();

 virtual std::string get_name() const;

 virtual std::pair<bool, std::string>
 get_number(const std::string& person) const;

 virtual telephone_list&
 add_entry(const std::string& name,
 const std::string& number);

 protected:
 telephone_list();

 private:
 telephone_list* rep;

 telephone_list(const telephone_list& rhs);
 telephone_list& operator=(const telephone_list& rhs);
 };
}

#endif

</SIDEBAR>

<SIDEBAR name= Interface Class >
// interface_class.h - implementation hiding example.

#ifndef INCLUDED_INTERFACE_CLASS_H
#define INCLUDED_INTERFACE_CLASS_H

#include <string>
#include <utility>

namespace interface_class
{
 /** Telephone list. Example of implementing a telephone list
 * using "Interface Class" to hide the implementation.
 */
 class telephone_list
 {
 public:
 /** Create a telephone list. The client code is
 * resposible for deleting the list.
 *
 * @param name The name of the list.
 */
 static telephone_list* create(const std::string& name);

 virtual ~telephone_list() {}

 virtual std::string get_name() const = 0;

 virtual std::pair<bool, std::string>
 get_number(const std::string& person) const = 0;

 virtual telephone_list&
 add_entry(const std::string& name,
 const std::string& number) = 0;

 protected:
 telephone_list() {}
 telephone_list(const telephone_list& rhs) {}
 private:
 telephone_list& operator=(const telephone_list& rhs);
 };

}
#endif

</SIDEBAR>

<SIDEBAR name= Non-Virtual Public Interface >
// non_virtual_public_interface.h - implementation hiding example.

#ifndef INCLUDED_NONVIRTUAL_PUBLIC_INTERFACE_H
#define INCLUDED_NONVIRTUAL_PUBLIC_INTERFACE_H

#include <string>
#include <utility>

namespace non_virtual_public_interface
{
 /** Telephone list. Example of implementing a telephone list
 * using "Abstract Base Class" to hide the implementation.
 */
 class telephone_list
 {
 public:

 static telephone_list* create(const std::string& name);

 virtual ~telephone_list() {}

 std::string get_name() const
 {
 return do_get_name();
 }

 std::pair<bool, std::string>
 get_number(const std::string& person) const
 {
 return do_get_number(person);
 }

 virtual telephone_list&
 add_entry(const std::string& name,
 const std::string& number)
 {
 return do_add_entry(name, number);
 }

 protected:
 telephone_list() {}
 telephone_list(const telephone_list& rhs) {}
 private:
 telephone_list& operator=(const telephone_list& rhs);

 /** Get the list's name.
 *
 * @return the list's name.
 */
 virtual std::string do_get_name() const = 0;

 /** Get a person's phone number.
 *
 * @param person The person's name (must be an exact match)
 * @return pair of success flag and (if success) number.
 */
 virtual std::pair<bool, std::string>
 do_get_number(const std::string& person) const = 0;

 /** Add an entry. If an entry already exists for this person
 * it is overwritten.
 *

 * @param name The person's name
 * @param number The person's number
 */
 virtual telephone_list&
 do_add_entry(const std::string& name,
 const std::string& number) = 0;
 };
}
#endif

</SIDEBAR>

