
11

1

twoNinetwoNine Computer Services LtdComputer Services Ltd

mark.mark.radfordradford@@twoninetwonine.co.uk.co.uk
www.twonine.co.ukwww.twonine.co.uk

© © twoNine Computer Services LtdtwoNine Computer Services Ltd, March 2003, March 2003

Mark RadfordMark Radford

ACCU Spring Conference, April 2003.

Mark Radford
twoNine Computer Services Ltd

mark.radford@twonine.co.uk

www.twonine.co.uk

http://www.twonine.co.uk
http://www.twonine.co.uk

22

2

AgendaAgenda

About patternsAbout patterns

Design & lessons learnedDesign & lessons learned
Real world C++ design episodesReal world C++ design episodes

This talk is about my experiences with patterns - taken from the book
and from other sources - over the last seven years, and it falls into two

parts.

About patterns gives an introduction to patterns and why they are of interest.
Various points made in this section coincide with advancements made in my
understanding over these years.

Design & lessons learned recounts a couple of episodes from my professional
work that I look back on as particularly instructive. In both these episodes, I want
to discuss a piece of design work (or recurring feature in design work), that I
would do differently now.

33

3

About PatternsAbout Patterns
MotivationMotivation

Types of PatternTypes of Pattern

Fundamentals & Fundamentals &
ExpositionExposition

Patterns as they are now known, came to the attention of the software
development community in the 1990s and have accumulated a healthy body of
literature: the Gang of Four book is the best known and the one responsible for
getting the mainstream of the community interested. Unfortunately, other works
have not achieved such a high profile, and this has left too many people unaware
that the Designs Patterns book is just one resource in the body of patterns
literature. Other examples include: four books of selected papers from four
Pattern Languages of Programming conferences (see , , ,

), two (at the time of writing) volumes of the series now known as POSA
(,), and various resources on the internet such as the Portland
Pattern Repository ().

44

4

MotivationMotivation

Solving design problems uses resourcesSolving design problems uses resources
Deploying the wrong solution is wastefulDeploying the wrong solution is wasteful

Problem solving is an area of Problem solving is an area of riskrisk
To minimise the risk, To minimise the risk, all facetsall facets of the problem of the problem
and its solution must be understoodand its solution must be understood

Patterns are about capturing solutions to problems. Therefore, before going on to
try to understand patterns, we need to step back and look at the problem solving
process. To make things go right we first need to understand what can go wrong.

One of the activities in project management is managing the risks associated with
the project, and doing whatever possible to minimise the overall risk. Obviously
deploying a solution is wasteful, if ultimately and for whatever reason, it fails to
solve the problem or solves the wrong problem. It follows that problem solving is
an area of risk for a project; while this may seem like an obvious thing to say,
problem solving and in particular the approach developers take to it is all too
frequently a neglected area of risk.

55

5

Solutions & TradeoffsSolutions & Tradeoffs

There is hardly ever any such thing as There is hardly ever any such thing as thethe
solution to a problemsolution to a problem

Choosing a solution from the available options Choosing a solution from the available options
involves accepting involves accepting tradeoffstradeoffs

A classic exampleA classic example
Execution speed improvement versus amount Execution speed improvement versus amount
of memory usedof memory used

Some simple problems might have simple and absolute solutions, but a vast
majority of the time life just doesn t work like that! Unfortunately my experience
has been that if there is one thing in software design that is too often missed, this
is it. Too often developers think they have solved a problem: well maybe it looks
that way, but what they have actually done is trade one thing for another. Yes, the
problem has gone away and can therefore be considered solved, but in order to
gain that benefit, a price will have been paid somewhere.

Execution speed versus memory usage is a classic example of a tradeoff. In his
recent Overload article (see) Silas Brown describes a method of
improving the speed of std::list element lookup by using a std::map to
maintain an index of the elements in the list. This is an prime example of the
speed versus memory trade the index (std::map) requires memory in which
to store its contents (as the author points out in the concluding paragraphs).

66

6

PatternsPatterns

Patterns capture known problems and Patterns capture known problems and
solutionssolutions

No need to reinvent knowledgeNo need to reinvent knowledge
 Solutions with solid track records are captured and Solutions with solid track records are captured and

placed on recordplaced on record

Pattern use raises confidencePattern use raises confidence
 Approaches used are known to be tried and testedApproaches used are known to be tried and tested

Patterns have existed in spirit in the software development community for as
long as the community itself, even though they didn t have a name. The point is
this: skilled software developers have always known that some ways of doing
things just felt like the right way. This phenomenon is not unusual among
craftsmen of various disciplines. For example, the work of the architect (that is,
architect in the building sense) Christopher Alexander [

and] provided prior art behind patterns in software!

Software developers often experience a sense of deja-vu when examining a
problem they are trying to solve. Often, the inability to pin down exactly where
and when they have seen this problem before is a source of some frustration the
obstacle being the fact that often problems appear over and over again in
different guises. Strangely enough, when a solution is found, it also has a look
and feel of familiarity.

Essentially patterns seek to record problems and their solutions. However, doing
so is not as simple as it may seem, because if doing so is to be of benefit, the
tradeoffs accepted must also be recorded.

77

7

Types of PatternTypes of Pattern

Each stage of the development process has Each stage of the development process has
patterns applicable to it, for examplepatterns applicable to it, for example

ArchitecturalArchitectural patternspatterns deal with issues of deal with issues of
overall system structureoverall system structure

Design patternsDesign patterns deal with system components deal with system components
and the interactions between themand the interactions between them

IdiomsIdioms are applicable at the level of the are applicable at the level of the
programming languageprogramming language

Patterns occur at, and are of benefit to, all stages of the development cycle. It is
unfortunate that only patterns aimed at object oriented design have really caught
on (and object oriented design patterns have only caught on because of the
popularity of Design Patterns).

The book Pattern Oriented Software Architecture () came out soon after
, and covers architectural patterns, design patterns and idioms.

Also, the design patterns in it talk in terms of components rather than objects, and
in doing so take a more generalised view of design than the object oriented
design patterns presented in .

Another noteworthy book is , presenting patterns occurring in
logical models from various application areas. Some are fairly specific, but some

notably those relating to observations and measurements are more generally
relevant.

88

8

LayersLayers Architectural PatternArchitectural Pattern

Platform specifics, e.g.

Presentation

Event handling

Domain types, e.g.

Reports

Processing machinery, e.g.

Calculation of report
contents data

Intent: organise and separate levels of abstraction

Example

Many systems
decompose clearly into
three layers, each using
the services of the one
immediately below.

The use of abstraction is fundamental to software development, and is an
essential part of the designer s mental toolkit. The system is decomposed into
functionality at different levels of interest. Components are grouped together to
form broader abstractions in a hierarchical structure, where any particular layer
uses only components from the layer below it. Alternatively, in some layered
designs, use of components from any lower layer is permitted such a design is
known as a relaxed layered system (see).

The architectural pattern Layers has all the hallmarks of a good pattern. It can be
found in software going back through the years not in all software, but its
presence very often coincides with structure that gives the impression people
who were thinking clearly when they designed it. Patterns are discovered, not
invented. The seminal documentation of Layers as a pattern is in .

99

9

ProxyProxy Design PatternDesign Pattern

IntentIntent
Provide a surrogate allowing transparent but Provide a surrogate allowing transparent but
controlled access to the target objectcontrolled access to the target object

For exampleFor example
Defer loading an object s state until first useDefer loading an object s state until first use

Facilitating access to a target object on a Facilitating access to a target object on a
different computer via a networkdifferent computer via a network

A client needs to access the services of a target object (or, more generally, target
component), where direct access to the target is technically possible but is
inappropriate. Therefore, provide a surrogate object for the client to access that
absorbs whatever machinery is needed between the client and target, avoiding
intrusion of such machinery into the client code.

For example (in addition to the examples on the slide), a proxy could be used to
reference count the target object. Also, it may be necessary, for security reasons,
to first negotiate with the process in which the target object runs before access to
the object is allowed.

The slide cites the use of a Proxy to transparently access an object via a network
where the target object is running on another computer: in such cases it is
possible for reasons of efficiency, for the Proxy to cache results from the target
object. Where such a Caching Proxy is used, there is obviously a requirement
for a strategy by which the Proxy s cache can be notified when the state of the
target object is updated; this may involve the cache being fully refreshed, or
simply invalidated so that when its state is queried the query really is forwarded
all the way to the target object.

The seminal documentation of Proxy is in . Additional material, in
particular classification of different kinds of Proxy, can be found in .

1010

10

Proxy Proxy ConfigurationConfiguration

subject
<<interface>>

operation()

concrete_subject

operation()

proxy

operation()

target

1 1

If (!target)
target = load()

target->operation()
...

Implements

Example

The target
object is
loaded only
when it is first
accessed.Implements

The slide shows a general configuration in UML with a pseudo-code
implementation showing as an example, the case where the loading of the
object s state is delayed until first use.

The interface class subject defines the interface for Proxy objects as well as
for the target object. This is the interface that affords transparency between a
concrete_subject and a proxy.

In C++, one mechanism for implementing this transparency is using run time
polymorphism (via inheritance). However, in C++ there are other mechanisms
and the transparency is not necessarily a run time issue. For example, consider
the smart pointers used for memory management and reference counting (e.g.
shared_ptr found in the Boost library, see); such smart pointers
implement the interface subject available via the indirection operator
(operator->()).

1111

11

Design Patterns as IdiomsDesign Patterns as Idioms

Many idioms are other types of pattern in a Many idioms are other types of pattern in a
form specific particular to a languageform specific particular to a language

For example, in C++ For example, in C++
The The Whole ValueWhole Value idiom is a C++ form of a idiom is a C++ form of a
pattern from problem domain modellingpattern from problem domain modelling

Many types of Many types of smart pointersmart pointer (those used to (those used to
ensure safe resource acquisition/release) are ensure safe resource acquisition/release) are
language level forms of language level forms of ProxyProxy

Some programming language idioms are specialisations of (or are similar to
language implementations of) design patterns or patterns applicable in other
areas of the development process for that matter.

For example, in C++ the acquisition and release of resources (e.g. memory new
and delete, file open and close) is complicated by the presence of exceptions in
the language; the possibility of being interrupted by the propagation of an
exception makes the flow of control less predictable than it might at first look.
The normal idiom for ensuring resources are released on all control flows, is to
access the resource via a handle often in the form of a smart pointer. The
handle takes the form of a class, objects of which are used by value (i.e. the
object itself is used, not a pointer or reference to it), and which releases the
resource in its destructor. The Boost memory management smart pointers (e.g.
scoped_ptr, see) are examples of handles supporting this idiom. Such
handles are actually examples of the Proxy design pattern in a form particular to
C++.

1212

12

Whole ValueWhole Value IdiomIdiom

When built in types are used to represent When built in types are used to represent
domain typesdomain types

Compile time type checking is weakenedCompile time type checking is weakened

The domain vocabulary is absent from the codeThe domain vocabulary is absent from the code

ThereforeTherefore create classes for domain types, create classes for domain types,
so thatso that

Their use can be checked by the compilerTheir use can be checked by the compiler

The code communicates using the vocabulary of The code communicates using the vocabulary of
to the domainto the domain

The Whole Value pattern originates in The CHECKS Pattern Language of
Information Integrity by Ward Cunningham . It is applicable as an idiom
in C++ and other languages with direct support for user defined value based
types.

There is a tendency when developing C++ software, for programmers to
represent value based domain types using only the built in types. This is a
traditional approach, used for many years in languages lacking support for user
defined value based types (i.e. types, objects of which have state and identity
indistinguishable from one another). This is not the case in C++, the language
being designed to provide strong support for a variety of programming paradigms

including value based programming.

In C++, creating classes to represent domain types (e.g. currency, velocity) offers
a better set of tradeoffs. The most obvious advantage is the type checking the
compiler can do. Another compelling advantage is strengthened communication,
because much of domain vocabulary is visible in the code itself, without recourse
to separate documentation.

Naturally as always, the advantages must be traded against the disadvantages.
The most obvious being management of the proliferation of small classes (the
cost of producing them is another). However my experience has been that any
disadvantages fade into insignificance compared to just the benefits of
strengthened compile time type checking. The cost of errors that only manifest
themselves at run time is notoriously unpredictable!

1313

13

Whole ValueWhole Value ExampleExample
enum tag_type { hour_tag, minute_tag, second_tag };

template <
typename numeric_type, numeric_type first, numeric_type last, tag_type tag>

class numeric_range
{
public:

explicit numeric_range(numeric_type n);
// ...

};

typedef numeric_range<unsigned int, 0, 23, hour_tag> hour;
typedef numeric_range<unsigned int, 0, 59, minute_tag> minute;
typedef numeric_range<unsigned int, 0, 59, second_tag> second;

class time_of_day
{
public:

time_of_day(hour in_hour, minute in_minute, second in_second);
// ...
};

void f()
{

time_of_day now(hour(14), minute(12), second(45));
//...
}

Compiler checks correct type use

Time of day is a typical example of a value. Also, the component parts the
hour, minute and second are also examples of values.

By creating the class template numeric_range, classes hour, minute and
second can be generated fairly easily (note the tag template parameter,
necessary because otherwise minute and second would not be distinct types).

Making these domain types into first class types has two benefits: first, the
compiler is recruited to help check the correct construction of time_of_day
instances, and second, the improved communication afforded also plays its part
in promoting correctness.

1414

14

A C++ A C++ ProxyProxy
template <class persistent>
class persistent_ptr
{

boost::scoped_ptr<
database_query<persistent> > query;

persistent* object;
public:

...
persistent* operator->() const
{

if (!object) object =
query.execute();

return object;
}

}; template <class persistent> class database_query
{

friend class persistent_ptr<persistent>;

virtual persistent* execute() const = 0;
};

The object is loaded
only if/when actually
used.

Overloading the
indirection operator
is the mechanism
via which
transparency is
achieved between
Subject and Proxy.

When querying a database for the (saved) state of an object, it may be desirable
to defer execution of the query until the object is actually used. Then, it is
possible to follow control paths that do not actually use the object, without
incurring the overhead of a database read. To achieve this, some housekeeping to
keep track of whether the information has been retrieved or not is needed. In the
design shown on the slide, this housekeeping is done by accessing the object via
a handle , represented here in the form of a smart pointer called
persistent_ptr.

This is an example of Proxy being used to defer the loading of information into
an object until it is actually used, therefore avoiding an expensive operation
unless it is actually required.

1515

15

Essential Pattern ElementsEssential Pattern Elements

Forces

Original
context

Problem

+
Consequ-
ences

Resulting
context

Solution

Tradeoffs
+

The context is the scenario or situation in which the problem arises, together with
any factors that contribute to the problem s occurrence. Examples of contributors
to the context are: the presence or absence of concurrent execution, whether all
components are local or distributed, the need for an object oriented system to
work with a legacy procedural system.

Forces are the influences that must be balanced in choosing a solution from the
available options. A problem specified in a context may have more than one
solution, and balancing the forces is part of determining which is the right one.
The term forces is a metaphor: by analogy with forces in physics, forces in
patterns resolve to steer the solution in a certain direction.

The resulting context is the new context brought about by the application of the
pattern. The problem has been solved, but that s not the end of the story because
there are consequences as a result. The consequences consist of both good news
and bad. The bad news: new problems may have arisen as a result, and these will
require solutions themselves. The good news: the problem is solved, the forces
resolved (and there may also be beneficial side effects).

The resolution of particular forces versus the acceptance of particular
consequences, is where the pattern captures a specific set of tradeoffs.

1616

16

Pattern ExpositionPattern Exposition

Essential elements are always present, Essential elements are always present,
explicitly or implicitlyexplicitly or implicitly

Problem and solution, plus some or all of Problem and solution, plus some or all of
the other elements, can be précised in a the other elements, can be précised in a
statement of statement of intentintent

IntentIntent conveys only a flavour of what the conveys only a flavour of what the
pattern is aboutpattern is about

There are several pattern exposition forms in common use. Forms vary in how
explicitly visible the essential elements are: for example, forces and
consequences can, rather than be stated explicitly, be expressed in the more
relaxed form of pros and cons .

The statement of Intent is a précise of the problem, solution, and any other of the
elements that will help communicate, in a nutshell, what the pattern achieves.
The statement of intent heads up, several exposition forms such as those used in

and , and is a useful starting point when deciding whether or
not a particular pattern is applicable to a particular scenario.

The statement of intent cannot replace a more detailed exposition of any pattern;
it just communicates enough about the pattern to serve as a point for getting
started with that pattern (or for the selection of a pattern to use, from two or more
possible candidates).

1717

17

The Gang of Four FormThe Gang of Four Form

Pattern is introduced in terms of intent and a Pattern is introduced in terms of intent and a
motivating examplemotivating example

Problem, contextProblem, context and and forcesforces are summarised are summarised
in a statement of in a statement of applicabilityapplicability

The view communicated is one of a solution The view communicated is one of a solution
and its applicabilityand its applicability

This is the best known exposition form and was first introduced in
.

The pattern is introduced with a short statement of intent, and this is followed by
a motivating example. Configuration is expressed in a detailed manner:
Participants, Structure and Collaborations sections describe the roles played in
the pattern, how they fit together (statically) and how they work together
(dynamically), respectively. Consequences is the only essential element to be
made explicit. Implementation described hints, traps and pitfalls to be considered
when implementing the pattern. Sample Code, Known Uses and Related Patterns
are self-explanatory.

The strength of this form is that it makes pattern expositions very accessible to a
large number of software developers. The high profile of aspects of the
configuration together with sample code provide something they can
immediately relate to. This is also a weakness, because it distracts attention from
the the problem and tradeoffs that are part and parcel of any particular solution.

1818

18

Other Popular Exposition FormsOther Popular Exposition Forms

The The CoplienCoplien formform makes the elements makes the elements
explicit, adding explicit, adding rationalerationale

The The AlexandrianAlexandrian formform consists simply of two consists simply of two
sections separated by the word thereforesections separated by the word therefore

The first combines The first combines problemproblem, , contextcontext and and forcesforces

The second combines The second combines solutionsolution and and resulting resulting
contextcontext

The Coplien (see) form is perhaps the most rigorous because its
focus is on the essential elements, these being made explicit as the section
headings. A further section, rationale, provides supporting information: for
example, history and other sources of information.

The Alexandrian form is the original form used in and
, and is much more relaxed than the Coplien form. It was

originally intended to document patterns occurring in building architecture.

There is something that stands out that Coplied and Alexandrian forms both have
in common: they both start by communicating understanding of the problem, and
lead up to the solution.

Different exposition forms are useful in different contexts. For example, the
limited space available on a slide points to the use of an abridged description in
Alexandrian form, or just an elaborated statement of intent; in both these forms,
the exposition benefits from being supported by a diagram or concrete example
(whichever best serves the clarity and effectiveness of exposition).

1919

19

Design & Lessons LearnedDesign & Lessons Learned
SingletonSingleton misunderstoodmisunderstood

Emulating Emulating multimulti--methodsmethods
in C++in C++

Presented here, are stories of design episodes. Now unfortunately contractual
obligations prohibit too much background about origins being given, and while
permission could probably in some cases be obtained, the process would be
lengthy and I can t see how being able to name the projects would add much
value anyway. Suffice to say, the problems describes are real.

I ve been working in software development since 1987, and have come across a
variety of different design problems in that time. There are certainly many I can t
remember, at least not very well. Here though, are a couple of the cases that
stand out very clearly in my memory perhaps they do so because they are all
particularly instructive!

One of the reasons for picking these specific cases is this: in each one there is,
with the benefit of hindsight and increased knowledge and experience, something
more to add. In each case I have either done things differently, or would do
things differently if repeating the exercise.

2020

20

ContentsContents
The The SingletonSingleton design patterndesign pattern

An example of the misuse of An example of the misuse of SingletonSingleton

An argument that some of the common An argument that some of the common
SingletonSingleton uses are not good ideasuses are not good ideas

SingletonSingleton MisunderstoodMisunderstood

Actually it is not just that the Singleton design pattern (see) has
been misunderstood, but that it has proved something of a design red herring.

Many times I have implemented Singleton over the past several years, and now, I
can t think of one that was actually a good solution to the problem it attempted to
solve.

Here I will present just one very recent example, with an explanation of why it
was the wrong approach. Then I want to look at some other commonly cited
scenarios where employing Singleton is deemed to be a good solution; in these
cases I will attempt to present and argument to the contrary, and also present
alternative approaches I believe to be better.

2121

21

The The SingletonSingleton Design PatternDesign Pattern

A class must only ever have a single instanceA class must only ever have a single instance
There must be a global point of access to that There must be a global point of access to that
instanceinstance

ThereforeTherefore define a static member function define a static member function
that returns the single instancethat returns the single instance

Make copy construction and default construction Make copy construction and default construction
private/protected, etcprivate/protected, etc

The slide shows a brief exposition of Singleton (see for the
seminal documentation), with a slight C++ slant to it.

The intent of Singleton is to facilitate the implementation of and provide a global
point of access to, any problem domain abstraction for which it makes sense for
only one instance to ever exist. One approach is to use a global variable, but that
has two drawbacks:

(1) The instance must be created regardless of whether or not it is actually
needed on the control flow being followed.

(2) No mechanism is put in place to ensure only one instance is ever created.

Singleton makes the class responsible for managing its sole instance. The use of a
class operation static member function in C++ terms solves both the above
problems: the class maintains its sole instance ensuring there is only ever one
instance, and if the operation returning the instance is never accessed there is no
need to create the instance this avoiding an unnecessary overhead.

2222

22

SingletonSingleton IllustrationIllustration

class singleton
{
public:

static singleton& instance()
{

static singleton inst;
return inst;

}

protected:
singleton();

private:
singleton(const singleton&);
singleton& operator=(

const singleton&);
};

Static instance() member
function allows clients to
access the one and only
instance.

Making default construction
protected allows derivation.

Allowing any form of copying
would undermine the
uniqueness of the single
instance.

Illustrated on the slide is just one way to implement Singleton in C++.

To ensure only one instance can be created it is necessary for no constructors to
be publicly accessible. Therefore the copy constructor is declared private. The
copy assignment operator is also private not strictly necessary (it is not possible
to create an instance to assign to) but it brings a look of symmetry to the class
design.

The provision of the static member function to return the sole instance is the
most common way of enforcing the single instance feature of Singleton the
main area of variation in implementation is in the scheme used to create the
instance. In many languages this is not an issue because only one memory
allocation scheme is available, but in C++ there is the choice of static storage or
allocating on the heap. The simplest method is to use static storage via the static
variable in function scope approach shown by the slide: this approach takes
advantage of the fact that such static objects are initialised the first time the
control flow passes through the definition.

2323

23

A Business Rules SystemA Business Rules System

Client
rule_base
<<abstraction>>

execute_all()1 1

rule
<<interface>>

execute()1 1..*

rule_implementation

ImplementsThe rule_base is the
repository that manages the
storage and execution of the
rules.

Because all the rules in the system are in the
rule_base, the client only ever deals with one
instance.

Business rules are applicable to and occur in a variety of domains and designs.
Consider, for example, a security system for intruder detection: there are a
variety of actions (e.g. sounds an alarm) that could be taken in response to a
variety of potentially suspicious events (e.g. motion detected in an office at 3am).
Suppose staff are working through the night to meet a deadline: the rules need to
be changed so that motion in the office at 3am does not sound the alarm.

In the design on the slide, rule is the interface for objects encapsulating
event/response rules. These are managed by rule_base which not only
maintains a repository of rule objects but also provides an interface for
invoking their execution.

The the security system needs to keep all its rules in one place, and therefore
there is only ever one rule_base instance.

2424

24

Confusion Over CardinalityConfusion Over Cardinality

The cardinality in the The cardinality in the clientclient//rule_baserule_base
association association shouldshould be controlled by the client!be controlled by the client!

No facet of No facet of rule_baserule_base requires it to be single requires it to be single
instance onlyinstance only

Singleton has been used to put the solution to a Singleton has been used to put the solution to a
cardinality problem in the wrong placecardinality problem in the wrong place

It makes no sense for the
client to use more than one
instance of rule_base;

therefore,

make rule_base single
instance only.

rule_base
<<singleton>>

execute_all()

instance() : rule_base

The reasoning behind making rule_base a Singleton was this: all the rule are
to be kept in one place, and therefore only one instance will be needed by the
client. Unfortunately this logic exemplifies a common misunderstanding i.e.
because only one instance is needed, it is a good idea to enforce this by making
the class a Singleton.

The idea of Singleton is to limit instances to one, in cases where there can be
only one instance that is where, by virtue of the constraints of the domain, the
type can physically only have one instance. In the case of the rule_base, the
fact is that the client only requires one instance a very different thing from only
one instance being possible. There was nothing characteristic of rule_base
requiring instances to be limited to one.

This misuse of Singleton exemplifies a common misunderstanding and misuse of
patterns: the configuration (or just the sample code) seem to serve the purpose.
However this is not the same thing as applying the pattern, at least not correctly,
because it takes no account of what the problem to be solved really is.

2525

25

Problems with Problems with SingletonSingleton

NonNon--trivial initialisation is awkward to trivial initialisation is awkward to
implementimplement

How can arguments be passed on first use?How can arguments be passed on first use?

Memory acquisition/release is inflexibleMemory acquisition/release is inflexible
A Policy template parameter can not adequately A Policy template parameter can not adequately
address changing between heap allocation and address changing between heap allocation and
function scope staticfunction scope static

Difficult toDifficult to refactorrefactor if the design changes to if the design changes to
require more than one instancerequire more than one instance

If there is only one instance of a Singleton, then it must be initialised only once,
on or just before the first call to instance() (the static member function
returning the instance). However, this is difficult to implement because
instance() should not be burdened with parameters, as these would be
redundant after the first call that actually instantiates the Singleton.

The memory acquisition and release problem is a problem is a particularly C++
problem (some languages have, Java for example, have only one means of
allocating memory for user defined types). One attempt at solving this problem is
to make the Singleton a class template with a memory acquisition/release policy
(see) as a parameter. However although this can work, it is
messy because the Singleton itself needs, in the case of heap allocation, to keep a
member pointer to its instance that it can pass to the policy function that releases
the memory. In the case of static storage, this member pointer will still be there
but not used.

One advantage of Singleton cited in is that it is easy to to change
the code if in the future the class needs to have more than one instance. This is
unfortunately not the case because it relies on changing client code at every point
where the instance is acquired (see).

2626

26

Common Practice QuestionedCommon Practice Questioned

Purely behavioural (i.e. stateless) classes are Purely behavioural (i.e. stateless) classes are
often viewed as making good often viewed as making good SingletonSingletonss

For example, this approach is often used for the For example, this approach is often used for the
implementation of factory classesimplementation of factory classes

ButBut, the single instance logic is just , the single instance logic is just
unnecessary extra baggageunnecessary extra baggage

Creating an instance as and when one is needed Creating an instance as and when one is needed
is both easy and efficientis both easy and efficient

A few years ago I worked on a project involving the design and implementation
of a C++ framework supporting persistent objects. One feature of the design was
a large number of factory classes, and these were implemented as singletons. At
the time I didn t question this approach, but looking back I should have done.
Each factory class had to carry extra machinery for the management of its single
instance.

Contrast this with the overhead of creating and destroying instances at block
scope. Constructing an instance of a stateless class is a fairly simple matter. If the
class has no virtual functions, then it will be quite trivial. If there are virtual
functions, then (in a typical implementation that implements virtual functions
using a pointer table) it involves initialising a single pointer the instance
member (invisible to all but the compiler) pointing to the class virtual function
table; not a big overhead.

Instances of stateless classes do not have individual identity; therefore all
instances are functionally the same hence Singleton implementation. However,
the point really, is that where an instance of such a class is needed, any instance
can be used (there is no need to use the same instance everywhere one is needed).

2727

27

Emulating Emulating MultiMulti--MethodsMethods in C++in C++

ContentsContents
The The Extension ObjectExtension Object design patterndesign pattern

An overview of the design of a mechanism for An overview of the design of a mechanism for
calculating intersections of geometric shapes, calculating intersections of geometric shapes,
in 2D technical drawing softwarein 2D technical drawing software

It was to my delight that I found Bjarne Stroustrup sites an example in [D&E]
involving the intersections of shapes in a drawing program. I was pleased he used
this example because a few years ago I was involved in the development of a
package for producing two-dimensional technical drawings, and in the process
faced exactly this problem. In a nutshell, the crux problem is this: when working
out if/where shapes intersect, a shape abstraction is no good it is necessary to
know the shape s concrete type.

The solution I came up with at the time was not very good. The irritating thing
was that at the time I knew my solution was not very good I just didn t know
what else to do. I could think of other approaches, but they all seemed worse than
the one I used. For example, some sources (e.g.) use the brute
force approach of down casting in conjunction with RTTI; in hindsight though,
the RTTI approach probably offered a better set of tradeoffs.

This problem has been in my mind (on and off) ever since. Years later, I have
come up with what I think is a satisfactory approach.

2828

28

A Motivating ProblemA Motivating Problem

shape

intersection(shape s)

line

intersection(shape s)

<<interface>>

move_x(coordinate_units x)
move_y(coordinate_units y)
rotate(radians rotation)

arc

intersection(shape s)

The ideal interface deals with just
another shape instance.

Problem: to calculate the intersection,
the concrete type of s must be known.

Implements

Calculation of the intersections
of shapes is a typical example
of a motivating problem.

The drawing program supported two basic shapes: straight lines, and semi-
circular arcs. It is obvious that these shapes would need an interface capable of
supporting the operations expected by the user, such as being able to move the
shapes around and rotate them. Also, because the program was for producing
drawings of a technical nature essentially 2D CAD an operation to calculate
the intersection with another shape was also necessary.

Therefore the intersection() methods need to implement the mathematical
formula for calculating the intersections. Unfortunately having available a
shape abstraction is no good. The concrete type of both shapes is needed at the
point where the calculation is implemented.

2929

29

RTTI SolutionRTTI Solution

void intersection(
const line& l,
const shape& s,
intersection_points& where)

{
if (const line* lp =

dynamic_cast<const line*>(&s))
{

lines_intersection(.., where);
}
else if (const arc* ap =

dynamic_cast<const arc*>(&s))
{

line_arc_intersection(.., where);
}
else

//..
}

void intersection(
const arc& a,
const shape& s,
intersection_points& where)

{ /* .. */ }

This is a brute force
approach of using
dynamic_cast to test
for each possible type.

Adding a new shape
means adding a new
intersection() function,
and modifying all the
existing ones.

This is the brute force solution, using down-casting to recover the concrete type
of the object.

Consider the consequences of adding a new type of shape (e.g. an elliptical arc).
This would mean two things:

(1) Adding a new intersection() function overload.

(2) Adding more code to the existing intersection functions. Further, it is
necessary to replicate the type recovery control flow code in each
intersection() function overload.

The above applies to using this approach with a current C++ compiler that
implements dynamic_cast<> a language feature not implemented in the
compiler used on the 2D CAD project! Therefore, this approach would have
required the manual implementation of some kind of RTTI substitute (e.g. each
class having an integer constant to identify it).

3030

30

A Flawed Object Oriented SolutionA Flawed Object Oriented Solution
class shape
{public:

virtual ~shape();

virtual void intersection(
const shape& s, intersection_points& where)

const = 0;

virtual void intersection(
const line& s, intersection_points& where)

const = 0;
//...
};

class arc : public shape
{private:

virtual void intersection(
const shape& s, intersection_points& where);

virtual void intersection(
const line& s, intersection_points& where) const;

// ...
};

The shape class
implements a
multiple dispatch
mechanism to
resolve the
concrete type,
but

The base
(interface) class
needs to know
about its derived
classes

Also, derived
classes need to
know about each
other

This is the solution I implemented at the time. It employs an object-oriented
mechanism of type recovery using virtual functions. The mechanism takes
advantage of the fact that the place where the concrete type of an object is
known, is within the member functions.

The shape class is the interface class heading up the hierarchy. Note that it has
a virtual function taking shape as a parameter, as well as one for each of line
and arc; if another type of shape (e.g. an elliptical arc) were ever to be added to
the hierarchy, shape would need a further virtual function taking the new type
as a parameter, and derived classes would need to implement it. Therefore, this
design is awkward to extend because it would require a change to code in many
files implementing the shape hierarchy.

This solution is flawed. In a nutshell this is because of the intrusiveness of
derived classes on each other, and on the base class. It must be remembered that
calculating intersection points is only one aspect of shape functionality, yet
providing it needs three virtual functions in the interface of each class in the
hierarchy.

3131

31

Flawed Solution Flawed Solution ImplementationImplementation

void line::intersection(
const shape& s,
intersection_points& where)

const
{

s.intersection(*this, where);
}

void arc::intersection(
const line& s,
intersection_points& where)

const
{

line_arc_intersection(.., where);
}

Calls line::intersection()

Call is re-dispatched

and handled by the
arc::intersection()
overload that handles
lines

shape* shape_object =
new line(..);

shape_object->intersection(
*arc_object, where);

The slide shows what happens during an attempt to find the intersection of
objects of type line and arc (if they intersect at all).

First, the call is made on an object of concrete type line, so the first virtual
function implementation entered is line::intersection(const
shape&, ..). The important thing to note here is the type of the pointer
returned by this: it is of type line* (rather than of type shape*).

Next, a call s.intersection(*this, ..) is made, and results in a call to
the implementation of intersection taking a line as a parameter. Given that the
pointer passed in pointed to an object of concrete type arc, the result is a call to
arc::intersection(const line&, ..). A point has been reached at
which the concrete type of both objects is known.

3232

32

MultiMulti--MethodsMethods

The The intersection()intersection() functions emulate functions emulate
the behaviour of the behaviour of multimulti--methodsmethods

MultiMulti--methods are functions that are virtual methods are functions that are virtual
w.r.t. more than one objectw.r.t. more than one object

They are supported directly in some languages, They are supported directly in some languages,
but not in C++but not in C++

 When required in C++, multiWhen required in C++, multi--methods must be methods must be
emulated using design & programming techniquesemulated using design & programming techniques

Described previously is a mechanism effectively emulating functions that are
virtual w.r.t. two objects rather than just one. Some languages (e.g. CLOS) allow
such functions as a language feature. In general object-oriented parlance, C++
class member functions are called methods, and methods whose invocation is
resolved on the concrete type of more than one object are commonly known as
multi-methods. Where multi-methods are required in C++ they must be emulated
using design and programming techniques.

Bjarne Stroustrup discusses multi-methods in , noting that he considered
multi-methods for inclusion in C++ although the feature never made it into the
language (see for the full discussion of why this is so).

3333

33

The The Extension ObjectExtension Object Design PatternDesign Pattern

Clients of an object (the Clients of an object (the SubjectSubject) may need) may need
interfaces that can not be anticipated at the interfaces that can not be anticipated at the
time of designing the time of designing the SubjectSubject

Interface bloat must be avoidedInterface bloat must be avoided
In C++, freestanding functions can not be In C++, freestanding functions can not be
polymorphicpolymorphic at run timeat run time

ThereforeTherefore support these interfaces using support these interfaces using
separate objects separate objects ExtensionExtension ObjectObjectss

Give the Give the SubjectSubject an interface for returning an interface for returning
ExtensionExtension ObjectObjectss

Extension Object is a design pattern originally documented by Erich Gamma (see
for the full write-up).

Different clients will have different requirements of an object s interface. The
precise interface that will be required by each client cannot always be anticipated
at design time. In cases where it is possible to anticipate clients requirements, it
is often unacceptable to trade provision for them against the interface bloat that
would result. The problem therefore, is how to allow clients the interfaces they
require, but in a non-intrusive manner.

In C++ this problem can be addressed to some extent by an approach using
freestanding functions. However this does not solve all the problems (for
example, freestanding functions cannot be virtual).

Another approach is the Extension Object design pattern: interfaces required by
clients are provided as separate classes, and are used at run time by creating
instances of these classes.

3434

34

Extension ObjectExtension Object ConfigurationConfiguration

extension
<<interface>>subject

get_extension(type) Extensions

concrete_subject
get_extension(type)

specific_extension
extension_operation()

concrete_specific_extension
extension_operation()

Owner

client

<<interface>>

The extensions hierarchy is headed up by the extension interface, while the
facilities the extension offers to clients are made available through the interface
specific_extension. The extension type interface does not support the
operations required by the client, because different extensions will offer different
operations. client obtains access to extensions via get_extension(), to
which it passes type, where type being simply some kind of indication of the
extension type being requested.

It can be seen that this pattern offers benefits in terms of flexible extensibility,
but there are some drawbacks, for example:

(1) Some of the behaviour of subject is moved out of it, so subject no
longer expresses all the behaviour that clients can perceive it as having.

(2) The client code will need to recover the specific_extension type. A
typical method of doing so in C++ is by using dynamic_cast<>. Therefore,
clients become more complex in the face of the machinery needed to use the
extensions.

3535

35

MultiMulti--Methods Using Methods Using Extension ObjectExtension Objectss

shape_mm

line_mm

<<interface>>

move_x(coordinate_units x)
move_y(coordinate_units y)
rotate(radians rotation)

arc_mm

shape
get() : shape_mm

<<interface>>

intersection(shape_mm s)
intersection(line_mm l)
intersection(arc_mm a)

intersection(shape_mm s)
intersection(line_mm l)
intersection(arc_mm a)

intersection(shape_mm s)
intersection(line_mm l)
intersection(arc_mm a)

get()

Implements

This design does not follow the canonical Extension Object
configuration to the letter it promotes the specific_extension
interface to the base of the hierarchy

The solution presented as a flawed object-oriented solution was in some ways an
attractive one, exhibiting the benefits of object-oriented design, keeping code
performing a function together and separate from code performing other
functions. It was only flawed as a consequence of making classes within the
shape hierarchy intrusive on each other, and the interface clutter caused (three
virtual functions were needed in each class interface). Introducing the Extension
Object design pattern allows the same mechanisms to be deployed while keeping
the intrusiveness and interface clutter out of the shape hierarchy.

The design shown does not follow the canonical configuration exactly. The
extension interface is removed and the specific_extension interface
elevated to the top of the hierarchy. The shape_mm interface corresponds to
specific_extension. This simplification trades flexibility for
simplification it is no longer necessary to recover the
specific_extension type.

3636

36

A Better Object Oriented Solution (?)A Better Object Oriented Solution (?)
class shape_mm
{
public:

virtual ~shape_mm();

typedef boost::shared_ptr<shape_mm> shared_ptr;

virtual void intersection(
const shape_mm& obj, intersection_points& where)

const = 0;

virtual void intersection(
const line_mm& obj, intersection_points& where)

const = 0;

// ...
};

class shape
{
public:

virtual shape_mm::shared_ptr create() const = 0;
// ...

};

The mechanics of recovering the types and working out the intersection points
are the same as in the flawed solution the only difference is that this time the
participants are shape_mm, arc_mm and line_mm.

The shape interface class provides a factory member function create() that
returns an instance of the shape_mm instance. The canonical configuration
designates concrete_subject as the owner of the Extension Object, and
here this is implemented using the C++ idiom of using a smart pointer to manage
memory acquisition and release.

3737

37

Using Using Extension ObjectExtension Object In FavourIn Favour

MultiMulti--method emulation and intersection logic method emulation and intersection logic
are nonare non--intrusive w.r.t. intrusive w.r.t. shapeshape hierarchyhierarchy

For example: if another shape is added, only the For example: if another shape is added, only the
classes in the multiclasses in the multi--methods hierarchy are affected, methods hierarchy are affected,
whereaswhereas

 In the Flawed OO Solution , In the Flawed OO Solution , shapeshape hierarchy hierarchy
definitions must be changeddefinitions must be changed

 In the RTTI Solution a new In the RTTI Solution a new intersection()intersection()
function is needed and all function is needed and all intersection()intersection() functions functions
need extendingneed extending

In the case of the flawed object oriented solution, the problem was that derived
classes were intrusive on the base class, and on each other. In the case of the
solution that uses Extension Objects, classes derived from shape_mm are also
intrusive on each other, but there is a very important difference: there is no
intrusiveness on the shape hierarchy.

Note that, in the case of the example of adding another type of shape (an
elliptical arc for example), the bodies of existing shape_mm member functions
will not need their implementations changing. This is a consequence of virtual
functions being used to automate the control flow by placing it in the hands of
the C++ language. By contrast, in the case of the RTTI solution, the control flow
is implemented directly in the code, and as a consequence adding the code for a
new type of shape means modifying existing code. In the former case, the
absence of a need to change existing code means that the chance of introducing
an error into it is reduced.

3838

38

Using Using Extension ObjectExtension Object AgainstAgainst

There is added complication in logic being There is added complication in logic being
distributed across two class hierarchiesdistributed across two class hierarchies

There are more types in the designThere are more types in the design

The The shapeshape no longer communicates any no longer communicates any
explicit reference to intersections in its explicit reference to intersections in its
interfaceinterface

 A direct consequence of the A direct consequence of the Extension ObjectExtension Object
patternpattern

The shape and shape_mm hierarchies have parallel corresponding classes.
Working with and maintaining such parallel hierarchies always creates a
balancing act of design.

The most obvious burden is the extra types that now inhabit the design, and these
must be managed not just in physical terms but in addressing the
communication issues that arise (more documentation will be needed).

More subtle is the lack of any direct mention of intersections in the shape
interface, and in the interfaces of classes derived from it. Here, a consequence
associated with applying the Extension Object design pattern haunts the design.

3939

39

Lessons LearnedLessons Learned

Using the object oriented paradigm does not Using the object oriented paradigm does not
automatically make a design superiorautomatically make a design superior

The Flawed OO Solution was object oriented The Flawed OO Solution was object oriented
but demonstrably poorbut demonstrably poor

Good OO design has benefits but may also Good OO design has benefits but may also
have costshave costs

The solution using The solution using Extension ObjectExtension Object has has
demonstrable benefit (e.g. in extensibility) but demonstrable benefit (e.g. in extensibility) but
also at demonstrable costalso at demonstrable cost

In the past object orientation has been adopted in the hope that it would be the
silver bullet that would solve all software development problems. Of course,
history now records that nothing was further from the truth. There were many
factors involved, one being the lack of understanding of object orientation itself.
Another critical factor however, was the assumption that being object oriented
automatically made a design a good one. The flawed object oriented solution
presented earlier is an excellent counter example.

An important lesson is that even good OOD has its costs. It comes back to the
fact that when solving problems with any level of complexity, there is no such
thing as a solution per-se there are options and tradeoffs.

4040

40

Final RemarksFinal Remarks
The concept of a The concept of a patternpattern in software is hard in software is hard
to defineto define

A A slippery nailslippery nail, that s difficult to hit on the head!, that s difficult to hit on the head!

Patterns are many and variedPatterns are many and varied
The Gang of Four book is just a small sampleThe Gang of Four book is just a small sample

Revisiting past design work advances Revisiting past design work advances
understandingunderstanding

4141

41

The EndThe End
I hope you found I hope you found
this talk interestingthis talk interesting

Thank you for Thank you for
your attention!your attention!

4242

42

ReferencesReferences

, Thanks to Adrian Fagg for pointing this out (public house communication,
2002).

, Martin Fowler, Analysis Patterns: Reusable Object Models,
Addison Wesley

, Christopher Alexander, Sara Ishikawa and Murray Silverstein
with Max Jacobson, Ingrid Fiksdahl-King and Shlomo Angel, A Pattern
Language: Towns, Buildings, Construction, Oxford University Press, 1977.

, Christopher Alexander, The Timeless Way of
Building, Oxford University Press, 1979.

, See www.boost.org
, Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley,

1994
, Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,

Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

, Silas S. Brown, Indexing STL Lists with Maps, Overload 53.
, Andrei Alexandrescu, Modern C++ Design: Applied Generic

Programming and Design Patterns (C++ In-depth Series), Addison-Wesley, 2001
, Scott Meyers, More Effective C++: 35 New Ways to Improve

Your Programs and Designs, Addison-Wesley, 1996.

http://www.boost.org

4343

43

References IIReferences II

, Edited by James O Coplien and Douglas C Schmidt, Pattern Languages
of Program Design, Addison-Wesley, 1995.

, Edited by John Vlissides, James O Coplien and Norman L Kerth,
Pattern Languages of Program Design 2, Addison-Wesley, 1996.

, Edited by Robert Martin, Dirk Riehle and Frank Buschmann, Pattern
Languages of Program Design 3, Addison-Wesley, 1998.

, Edited by Brian Foote, Neil Harrison, Hans Rohnert, Pattern Languages
of Program Design 4, Addison-Wesley, 1999

, Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Pattern-oriented Software Architecture John Wiley 1996

, Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann,
Pattern-oriented Software Architecture Vol 2: Patterns for Concurrent and
Networked Objects, John Wiley and Sons Ltd

, The Portland Pattern Repository (http://c2.com/ppr).
, James O Coplien, Software Patterns, SIGS, 1996. (Available

from http://www.bell-labs.com/user/cope/Patterns/WhitePaper).

http://c2.com/ppr
http://www.bell-labs.com/user/cope/Patterns/WhitePaper

