
C++ INTERFACE CLASSES

STRENGTHENING

ENCAPSULATION
Separating a class s interface from its implementation is fundamental to good quality
object oriented software design/programming. However C++ (when compared to, say,
Java) provides no indigenous mechanism for expressing such a separation. Therefore,
a number of idioms supporting this separation have evolved in C++ practice, and were
the subject of an article in Overload 66 I co-authored with Alan Griffiths [1]. The
idioms covered in that article do not just cover object oriented programming, but other
approaches (such as value based programming) as well.

For object oriented programming, the principle mechanism of separation is the
Interface Class. An Interface Class contains only a virtual destructor and pure virtual
functions, thus providing a construct analogous to the interface constructs of other
languages (e.g. Java). I discussed Interface Classes in [2] and explored an example of
their application and usefulness in [3] (published in Overloads 62 and 68
respectively).

In this article I would like to discuss the role played by Interface Classes in
strengthening encapsulation. In doing so, I hope to extend the discussion to use unit
testing as an example of how Interface Classes underpin encapsulation (while taking a
swipe at the Singleton design pattern [4] in the process).

A Motivating Example
Consider a GUI based drawing program, where the user manipulates shapes such as
lines and circular/elliptical arcs within a window. It is an old chestnut that serves
well as a motivating example.

First, we have a class hierarchy for the shapes. This will be headed up by an Interface
Class called (guess what) shape:

class shape
{
public:
 virtual ~shape();

 virtual void move_x(distance x) = 0;
 virtual void move_y(distance y) = 0;
 virtual void rotate(angle rotation) = 0;

...
};

Second, the shapes are stored in a drawing, let s represent this programmatically
with an Interface Class called drawing:

class drawing
{
public:
 virtual ~drawing();
 virtual void save(repository& r) const = 0;
...
};

Please take note of the drawing::save(repository& r) member function

specifically, its repository& parameter. This means we need a definition for
repository:

class repository
{
public:
 virtual ~repository();
 virtual void save(const shape* s) = 0;

...
};

The repository class is a programmatic representation of the repository where
drawings are kept when not in memory, i.e. the storage (e.g. a database).

Having introduced the participants in this example, it is time to move on. Before I do
though, there are a couple of things I would like to point out:

1. I have introduced the participants only as Interface Classes, without any
implementation classes. This example does not require all of them to have
implementations shown. Therefore, implementations will be introduced as
(and if) needed.

2. In reality, the shape class would need member functions for the extraction of
its state; this is so its state can be stored in a database (or other storage
mechanism used in the implementation of repository). However these are
(once again) not needed for this example and are therefore omitted for brevity.

Repository as a Singleton
Presumably there will only be one instance of repository needed by the drawing
program, and in this example, I am assuming this is the case. Therefore, it seems
reasonable (or does it? but I m coming to that) to apply the Singleton design pattern

 i.e. to make it such that:

There can be only one instance of repository in the program

The one instance is globally accessible wherever it is needed

There are many ways to implement Singleton, but the one used below to implement
repository is quite a common one:

class repository
{
public:
 static repository& instance()
 {
 static repository inst;
 return inst;
 }
 void save(const shape* s);
...
};

Now for the part played in this article by unit testing it is time to write a (single)
unit test for the drawing::save member function. I m going to assume we have a
drawing instance that contains five shapes. The unit test I want to write saves a
drawing object in the repository, and then verifies that the number of shapes
actually saved is equal to five:

void unit_test(const drawing& d)
{
 d.save(repository::instance());
 ...
}

As you may have noticed, there is no such test in the above function. This is because
it suddenly becomes apparent that some work needs to be done. For this test, what I
need is a repository implementation that can count shapes.

With the Singleton approach to repository s implementation, there are (at least) the
following associated issues:

In order to use repository implementations specialised for unit tests, it is
necessary to link in a specialised test version of repository.

As repository is and with this approach, must be hard coded in the test
by name, it is not possible to have more than one repository implementation to
test different things. Therefore, one test version of repository must support
all tests, and must be modified when a new test is added.

As a result of one test repository implementation supporting all tests, it is more
difficult to test specific pieces of code. That is, implementing unit tests becomes
more difficult.

The above issues are a direct result of accessing the repository in a global context
 that is, a consequence of bypassing unit_test s programmatic interface.

This approach can be made to work. However, at this point, I m suggesting there is a
simpler method.

Using Mock Object
Let s put repository back the way it was when first introduced:

class repository
{
public:
 virtual ~repository();
 virtual void save(const shape* s) = 0;
...
};

It is now, once again, an Interface Class, and this means different implementations are
possible. The unit test under discussion requires a repository implementation that
can count shapes stored in it:

class counting_repository : public repository
{
public:
 counting_repository() : count(0) {}
 virtual void save(const shape* s)
 { ++count; }
 unsigned int num_saved() const
 { return count; }
...
private:
 unsigned int count;
};

There you have it: counting_repository::save does not (in this particular test
implementation) actually save anything, it just increments a counter. This approach is
known as Mock Object (sometimes known as Mock Implementation). It s time to take
stock of how the unit test now looks:

void unit_test(const drawing& d)
{
 counting_repository counter;
 d.save(counter);

 assert(counter.num_saved() == 5);
}

Note that because counting_repository is specific to this particular unit test, it
can be defined within the unit test s code (e.g. within the same source file as the
unit_test function). As a (pleasant) consequence, there is no need to link in any
external code, and the unit test assumes full control over the test to be performed.

Finally
The approach of using Mock Object with unit_test is an example of a pattern
known as Parameterise From Above. One perspective on Parameterise From Above
is that it is the alter-ego of Singleton (and other approaches involving globally
accessible objects). Singleton is a dysfunctional pattern one that transforms the
design context for the worse, rather than for the better. Parameterise From Above is a
pattern that is out there , but for which (to the best of my knowledge) there is (so far)
no formal write up.

Encapsulation is fundamental to object oriented design and Interface Class is an
idiom that can underpin the strengthening of encapsulation. The Mock Implementation
of repository is possible because repository is an Interface Class. Observe how
unit_test can use different repository implementations, without unit_test s
implementation being affected.

References
[1] Mark Radford and Alan Griffiths, Separating Interface and Implementation in
C++, Overload 66
(www.twonine.co.uk/articles/SeparatingInterfaceAndImplementation.pdf)
[2] Mark Radford, C++ Interface Classes An Introduction, Overload 62
(www.twonine.co.uk/articles/CPPInterfaceClassesIntro.pdf)
[3] Mark Radford, C++ Interface Classes Noise Reduction, Overload 68
(www.twonine.co.uk/articles/CPPInterfaceClasses-NoiseReduction.pdf)
[4] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

http://www.twonine.co.uk/articles/SeparatingInterfaceAndImplementation.pdf
http://www.twonine.co.uk/articles/CPPInterfaceClassesIntro.pdf
http://www.twonine.co.uk/articles/CPPInterfaceClasses-NoiseReduction.pdf

