
Page 1 of 6

C++ INTERFACE CLASSES

NOISE REDUCTION

Interface classes are a principle mechanism for separating a class interface from its
implementation in C++. I wrote an introduction to interface classes in a previous article
[Radford04], and Alan Griffiths and I included the technique in our survey of techniques for
separating interface and implementation in C++ [Griffiths05].

In this article, I intend to explore interface classes and their implementation classes

further. The topics I plan to cover are:

How interface and implementation classes can be designed into the code in such a way
as to reduce implementation noise

How factory functions can be used to facilitate the above

A way of managing instance lifecycles when factory functions are used to encapsulate
different memory allocation mechanisms

An Example Class
In [Griffiths05] Alan and I used telephone_list a telephone address book class in
order to illustrate several C++ interface/implementation separation techniques. Here I will
again use (a slightly modified version of) that example.

The telephone_list interface class looks like this:
class telephone_list
{
public:
 virtual ~telephone_list() {}

 virtual std::string name() const = 0;

 virtual std::pair<bool, std::string>
 number(const std::string& person) const = 0;

 virtual telephone_list&
 add_entry(const std::string& name,
 const std::string& number) = 0;

protected:
 telephone_list() {}
 telephone_list(const telephone_list& rhs) {}
private:
 telephone_list& operator=(const telephone_list& rhs);
};

In order for this to have functionality, and in order for instances to be created, an
implementation class is needed

I m going to call it telephone_list_imp:

Page 2 of 6

class telephone_list_imp : public telephone_list
{
public:
 telephone_list_imp(const std::string& list_name);

private:

 virtual ~telephone_list_imp();

 virtual std::string name() const;

 virtual std::pair<bool, std::string>
 number(const std::string& person) const;

 virtual telephone_list&
 add_entry(const std::string& name,
 const std::string& number);

 typedef std::map<std::string, std::string> dictionary_t;

 std::string name_rep;
 dictionary_t dictionary_rep;

 telephone_list_imp(const telephone_list_imp& rhs);
 telephone_list_imp& operator=(const telephone_list_imp& rhs);
};

In [Radford04] I also described implementation only classes, and this is an approach I have
applied here. Apart from the constructors, all member functions have been made private.
This strengthens the separation of interface from implementation by making it possible to
create instances of telephone_list_imp, while usage must be via pointers and/or
references to telephone_list.

Hiding the Implementation and Creating Instances
This whole design is geared up to functionality being used through pointers/references to
telephone_list. Therefore, the only reason to make the definition of
telephone_list_imp visible to client code is so that instances can be created. It
follows that client code has to carry a certain amount of noise in the form of the publicly
visible definition of telephone_list_imp just so instances can be created.

Further, C++ has the problem of physical dependencies between header files, and the
consequent recompilations that result from modifications being made to them. This is a
consequence of the file inclusion model inherited from C. Let s say for the sake of an
example, that one day telephone_list_imp is modified, abandoning the std::map
implementation in favour of a different container. The fact that client code which has no
dependency on the modified implementation detail needs to recompile, emphasises the fact
that telephone_list_imp is just noise to the client code.

The two issues discussed above add up to the fact that it would be better if
telephone_list_imp s definition could be kept out of client code altogether. Ideally,
the best place for the definition of telephone_list_imp is in an implementation
(typically .cpp) file. This leads to another problem of how clients can create instances, but
this is straightforward to solve: in the header file, provide a factory function for creating
instances of telephone_list_imp. The header file telephone_list_imp.h (with include
guards removed for brevity) now looks like this:
#include "telephone_list.h"
#include <string>

telephone_list* create_telephone_list(const std::string& list_name);

Note that there is no mention of the implementation class the telephone_list
interface class is all that s needed. In fact, only a forward declaration of telephone_list

Page 3 of 6

is needed however, the header file has been included because users might reasonably
expect that when they write #include telephone_list_imp.h in client code,
the base class definition will be made available.

The fragment of the implementation file containing the telephone_list_imp and
factory function definition looks like this:

class telephone_list_imp : public telephone_list
{
public:
 telephone_list_imp(const std::string& list_name);

private:

 virtual ~telephone_list_imp();

 virtual std::string name() const;

 virtual std::pair<bool, std::string>
 number(const std::string& person) const;

 virtual telephone_list&
 add_entry(const std::string& name,
 const std::string& number);

 typedef std::map<std::string, std::string> container;

 std::string name_rep;
 container dictionary_rep;

 telephone_list_imp(const telephone_list_imp& rhs);
 telephone_list_imp& operator=(const telephone_list_imp& rhs);
};

telephone_list* create_telephone_list(const std::string& list_name)
{
 return new telephone_list_imp(list_name);
}
...

At this point in the exercise the aim of removing telephone_list s implementation
from having visibility in client code has been achieved. Clients deal with pointers/references
to telephone_lists, while telephone_list_imp remains buried safely in its
implementation file. All should be well, but the solution to one problem has created
another

How are Instances Deleted?
There are two observations to make about the (naïve) implementation of
create_telephone_list():

The mechanism used to create instances is now encapsulated and hidden from public
view

So far, the return type is a simple pointer to telephone_list

This means clients can apply the delete operator to pointers returned from
create_telephone_list(). However, they have to rely on documentation to know
they must do this. There is no way it can be made clear in the code, and clients can t assume
it because using the delete operator is not compatible with all mechanisms for allocating
class instances on the heap in C++. A solution to the problem (not the only one) is, rather
than return a simple pointer, to return a smart pointer such as Boost s shared_ptr (see
[Boost]). The (fragmented form of the) header file telephone_list_imp.h now looks like this:

Page 4 of 6

#include "telephone_list.h"
#include "boost/shared_ptr.hpp"
#include <string>

boost::shared_ptr<telephone_list> create_telephone_list(const std::string& list_name);

While the implementation of create_telephone_list() now looks like this:
boost::shared_ptr<telephone_list> create_telephone_list(const std::string& list_name)
{
 telephone_list* p = new telephone_list_imp(list_name);
 return boost::shared_ptr<telephone_list>(p);
}

In passing note the avoidance of the expression:
return boost::shared_ptr<telephone_list>(new telephone_list_imp(list_name));

This is because boost::shared_ptr remembers the concrete type created, and uses it
when the instance is deleted i.e. telephone_list_imp having a private destructor
means boost::shared_ptr s attempt to delete via it causes a compile error. The
mechanism used ensures that the remembered type is telephone_list, and thus
avoids compilation problems. Another option is simply to make telephone_list_imp s
destructor public. I chose the option in the code fragment because it adheres to the principle
of all usage being through the interface class.

The above approach solves the problem of deleting the instance that had its creation
mechanism encapsulated. The cost of achieving this is the hard-wiring of a specific smart
pointer into the code. Further, there is a remaining problem that it doesn t solve

Different Allocation Mechanisms
The memory allocation scheme used so far is not the only one available in C++. For
example, the placement form of new could be used to construct instances in conjunction
with using malloc()to allocate the memory. However, if
create_telephone_list() returns a simple pointer and relies on the client code to
apply the delete operator, then there s no way its implementation can ever be changed to
use an alternative allocation mechanism.

In some design scenarios, as well as having a factory function to create instances, it is
possible to have a disposal function to delete them. However in the design scenario under
consideration, there is a serious drawback to this approach. The implementation class
telephone_list_imp is implemented in a way that results in particular complexity
characteristics i.e. those associated with its implementation container std::map. Imagine
that there arises a need for a second implementation with different characteristics. Why this
may be so is outside the scope of this article suffice to say that if this is done,
telephone_list_imp ceases to be the only implementation of telephone_list in
town. Getting back to disposing of instances, it is not hard to see that in order for clients to
pass instances to a disposal function, either instances of each implementation class would
need to use the same memory allocation mechanism, or disposal functions would need some
way of recovering the implementation class from a pointer/reference to the interface class.

The analysis of the complexities and tradeoffs involved in using disposal function may at
some point be the subject of another article, but in this one I want to look at a different
approach. The approach I want to look at involves associating a disposal function with class
instances at the time their factory function creates them. Here, just for illustration s sake, is a
fragment of a home grown smart pointer that achieves this:

Page 5 of 6

template <typename T> class ref_counted_ptr
{
public:
 ref_counted_ptr(T* p, void (*delete_fn)(T*))
 : pointee(p),
 del(delete_fn)
 {
 ...
 }

 ~ref_counted_ptr() { del(pointee); }

 T* operator->()
 {
 return pointee;
 }
...
private:
 T* pointee;
 void (*del)(T*);
...
};

Using ref_counted_ptr, the declaration of the factory function now looks like this:
ref_counted_ptr<telephone_list> create_telephone_list(const std::string& list_name);

Its implementation now looks like this:
ref_counted_ptr<telephone_list> create_telephone_list(const std::string& list_name)
{
 telephone_list* mem =
 static_cast<telephone_list*>(std::malloc(sizeof telephone_list_imp));

 if (!mem)
 throw std::bad_alloc();

 telephone_list* pobj = new (mem) telephone_list_imp(list_name);

 return ref_counted_ptr<telephone_list>(pobj, del_telephone_list);
}

As if by magic, a function called del_telephone_list() has appeared in the above
code fragment it looks like this:

void del_telephone_list(telephone_list* p)
{
 p->~telephone_list();
 std::free(p);
}

However, as I said, ref_counted_ptr is for illustration only. There is actually no need
to write a custom smart pointer just to associate a disposal function with a class instance,
because boost::shared_ptr has a mechanism for accommodating a disposal function.
Actually, boost::shared_ptr has a somewhat more sophisticated mechanism that
allows the disposal function to be either a pointer to a function, or a function object. For this
article, I ll stick to the approach already used that of using del_telephone_list() as
shown above. The factory function implementation now looks like this:

boost::shared_ptr<telephone_list> create_telephone_list(const std::string& list_name)
{
 telephone_list* mem =
 static_cast<telephone_list*>(std::malloc(sizeof telephone_list_imp));

 if (!mem)
 throw std::bad_alloc();

 telephone_list* pobj = new (mem) telephone_list_imp(list_name);

 return boost::shared_ptr<telephone_list>(pobj, del_telephone_list);
}

In passing I should mention that there are various tradeoffs in possible implementations of
reference counted smart pointers, and boost::shared_ptr addresses only one set of

Page 6 of 6

tradeoffs. I just thought it best to point that out; sorry, but I m not going into any more detail
on that topic. The reader is referred to the Boost documentation (see [Boost]).

Finally
Cases where solutions to problems are the solutions are rare usually there are alternatives
that come with their own sets of tradeoffs. I hope I have succeeded in making the tradeoffs
clear. This article has covered the three points set out in the introduction, having followed
one train of thought. Others have been alluded to in passing but not covered, but perhaps in
future articles

References
[Boost] www.boost.org

[Griffiths05] Alan Griffiths and Mark Radford, Separating Interface and Implementation in
C++, (Overload, and also available at
http://www.twonine.co.uk/articles/SeparatingInterfaceAndImplementation.pdf)

[Radford04] Mark Radford, C++ Interface Classes An Introduction (Overload 62, and also
available from http://www.twonine.co.uk/articles/CPPInterfaceClassesIntro.pdf)

Mark Radford

Copyright © July 2005, Mark Radford

(mark@twonine.co.uk)

http://www.boost.org
http://www.twonine.co.uk/articles/SeparatingInterfaceAndImplementation.pdf
http://www.twonine.co.uk/articles/CPPInterfaceClassesIntro.pdf

